Inhibition of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infectivity by peptides analogous to the viral spike protein.

نویسندگان

  • Bruno Sainz
  • Eric C Mossel
  • William R Gallaher
  • William C Wimley
  • C J Peters
  • Russell B Wilson
  • Robert F Garry
چکیده

Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is the cause of an atypical pneumonia that affected Asia, North America and Europe in 2002-2003. The viral spike (S) glycoprotein is responsible for mediating receptor binding and membrane fusion. Recent studies have proposed that the carboxyl terminal portion (S2 subunit) of the S protein is a class I viral fusion protein. The Wimley and White interfacial hydrophobicity scale was used to identify regions within the CoV S2 subunit that may preferentially associate with lipid membranes with the premise that peptides analogous to these regions may function as inhibitors of viral infectivity. Five regions of high interfacial hydrophobicity spanning the length of the S2 subunit of SARS-CoV and murine hepatitis virus (MHV) were identified. Peptides analogous to regions of the N-terminus or the pre-transmembrane domain of the S2 subunit inhibited SARS-CoV plaque formation by 40-70% at concentrations of 15-30 microM. Interestingly, peptides analogous to the SARS-CoV or MHV loop region inhibited viral plaque formation by >80% at similar concentrations. The observed effects were dose-dependent (IC50 values of 2-4 microM) and not a result of peptide-mediated cell cytotoxicity. The antiviral activity of the CoV peptides tested provides an attractive basis for the development of new fusion peptide inhibitors corresponding to regions outside the fusion protein heptad repeat regions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Severe acute respiratory syndrome coronavirus (SARS-CoV) infection inhibition using spike protein heptad repeat-derived peptides.

The coronavirus SARS-CoV is the primary cause of the life-threatening severe acute respiratory syndrome (SARS). With the aim of developing therapeutic agents, we have tested peptides derived from the membrane-proximal (HR2) and membrane-distal (HR1) heptad repeat region of the spike protein as inhibitors of SARS-CoV infection of Vero cells. It appeared that HR2 peptides, but not HR1 peptides, w...

متن کامل

Characterization of a highly conserved domain within the severe acute respiratory syndrome coronavirus spike protein S2 domain with characteristics of a viral fusion peptide.

Many viral fusion proteins are primed by proteolytic cleavage near their fusion peptides. While the coronavirus (CoV) spike (S) protein is known to be cleaved at the S1/S2 boundary, this cleavage site is not closely linked to a fusion peptide. However, a second cleavage site has been identified in the severe acute respiratory syndrome CoV (SARS-CoV) S2 domain (R797). Here, we investigated wheth...

متن کامل

Synthetic peptide studies on the severe acute respiratory syndrome (SARS) coronavirus spike glycoprotein: perspective for SARS vaccine development.

BACKGROUND The S (spike) protein of the etiologic coronavirus (CoV) agent of severe acute respiratory syndrome (SARS) plays a central role in mediating viral infection via receptor binding and membrane fusion between the virion and the host cell. We focused on using synthetic peptides for developing antibodies against SARS-CoV, which aimed to block viral invasion by eliciting an immune response...

متن کامل

Identification and characterization of the putative fusion peptide of the severe acute respiratory syndrome-associated coronavirus spike protein.

Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is a newly identified member of the family Coronaviridae and poses a serious public health threat. Recent studies indicated that the SARS-CoV viral spike glycoprotein is a class I viral fusion protein. A fusion peptide present at the N-terminal region of class I viral fusion proteins is believed to initiate viral and cell membr...

متن کامل

Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry.

Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is a rapidly emerging pathogen with potentially serious consequences for public health. Here we describe conditions that result not only in the efficient expression of the SARS-CoV spike (S) protein on the surface of cells, but in its incorporation into lentiviral particles that can be used to transduce cells in an S glycoprote...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Virus research

دوره 120 1-2  شماره 

صفحات  -

تاریخ انتشار 2006